Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Ann Transplant ; 29: e941881, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38409779

RESUMEN

BACKGROUND Mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE) is an autosomal recessive disease caused by thymidine phosphorylase deficiency leading to progressive gastrointestinal dysmotility, cachexia, ptosis, ophthalmoparesis, peripheral neuropathy and leukoencephalopathy. Although liver transplantation corrects thymidine phosphorylase deficiency, intestinal deficiency of the enzyme persists. Retrospective chart review was carried out to obtain clinical, biochemical, and pathological details. CASE REPORT We present a case of liver and subsequent intestine transplant in a 28-year-old man with MNGIE syndrome with gastrointestinal dysmotility, inability to walk, leukoencephalopathy, ptosis, cachexia, and elevated serum thymidine. To halt progression of neurologic deficit, he first received a left-lobe partial liver transplantation. Although his motor deficit improved, gastrointestinal dysmotility persisted, requiring total parenteral nutrition. After exhaustive intestinal rehabilitation, he was listed for intestine transplantation. Two-and-half years after liver transplantation, he received an intestine transplant. At 4 years after LT and 20 months after the intestine transplant, he remains off parenteral nutrition and is slowly gaining weight. CONCLUSIONS This is the first reported case of mitochondrial neurogastrointestinal encephalomyopathy to undergo successful sequential liver and intestine transplantation.


Asunto(s)
Seudoobstrucción Intestinal , Leucoencefalopatías , Encefalomiopatías Mitocondriales , Distrofia Muscular Oculofaríngea , Oftalmoplejía , Oftalmoplejía/congénito , Masculino , Humanos , Adulto , Caquexia , Estudios Retrospectivos , Encefalomiopatías Mitocondriales/cirugía , Encefalomiopatías Mitocondriales/patología , Oftalmoplejía/etiología , Oftalmoplejía/cirugía , Intestinos/patología , Hígado/patología
2.
Cytotherapy ; 26(1): 88-95, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37747395

RESUMEN

BACKGROUND AND AIMS: As cell and gene therapy (CGT) has grown in availability and scope, more unapproved regenerative medicine is being marketed to the public. It is essential that health care providers have sufficient knowledge and comfort to determine whether treatments are properly regulated and address these topics with patients. Due to the applicability of CGT to genetic disease, genetic counselors could be key in providing education and answering patients' questions about these topics. However, previous studies have focused only on physicians' knowledge and comfort with CGT and unapproved regenerative medicine. The purpose of this study was to assess genetic counselors' self-reported knowledge and comfort discussing these topics with patients and to explore what factors predict increased knowledge and comfort. METHODS: The authors designed an online survey distributed to genetic counselors who were part of the National Society of Genetic Counselors Student Research Program e-mail list. The survey addressed genetic counselors' demographics, practice experience with CGT, education about CGT, knowledge and comfort. RESULTS: The survey was completed by 144 genetic counselors. The best predictor of increased knowledge and comfort was experience discussing CGT in practice. In addition, those who worked at an institution at which CGT trials were offered had greater knowledge and comfort. However, most genetic counselors reported their knowledge was not sufficient to address questions from patients, and most had little-to-no knowledge or comfort determining whether a trial was properly regulated. There was no correlation between education and either knowledge or comfort; however, most participants desired more education about these topics. CONCLUSIONS: This study suggests that genetic counselors who (i) have experience with CGT in practice or (ii) work at institutions at which CGT trials are offered may have better knowledge regarding CGT. These results may help identify individuals and/or institutions in whom increasing knowledge regarding CGT could be beneficial. This is crucial as CGT becomes mainstream, leading to more widely marketed unapproved regenerative medicine. Several gaps in knowledge and comfort were identified, including participants' ability to determine whether a treatment is properly regulated. Further research is needed to better characterize the educational needs of genetic counselors surrounding these topics to address these gaps.


Asunto(s)
Consejeros , Asesoramiento Genético , Humanos , Asesoramiento Genético/métodos , Encuestas y Cuestionarios , Tratamiento Basado en Trasplante de Células y Tejidos , Medicina Regenerativa
3.
Cell Rep ; 42(10): 113241, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819759

RESUMEN

Lysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex. Results demonstrate that accumulation of succinyl-CoA in the absence of SCS leads to hypersuccinylation within the murine cerebral cortex. Specifically, increased succinylation is associated with functionally significant reduced activity of respiratory chain complex I and widescale alterations in chromatin landscape and gene expression. Integrative analysis of the transcriptomic data also reveals perturbations in regulatory networks of neuronal transcription in the KO forebrain. Together, these findings provide evidence that protein succinylation plays a significant role in the pathogenesis of SCS deficiency.


Asunto(s)
Mitocondrias , Succinato-CoA Ligasas , Humanos , Animales , Ratones , Mitocondrias/metabolismo , Acilcoenzima A/metabolismo , Succinato-CoA Ligasas/genética , Succinato-CoA Ligasas/metabolismo , Ratones Noqueados
5.
Genet Med ; 25(11): 100950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551667

RESUMEN

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Cara , Micrognatismo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Facies , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
6.
Mol Genet Metab ; 140(3): 107668, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549443

RESUMEN

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Enfermedades Mitocondriales , Enfermedades Musculares , Humanos , Recién Nacido , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Pruebas Genéticas , Variación Genética , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Enfermedades Mitocondriales/genética , Enfermedades Musculares/genética
7.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445899

RESUMEN

Biallelic pathogenic variants in subunits of succinyl-CoA synthetase (SCS), a tricarboxylic acid (TCA) cycle enzyme, are associated with mitochondrial encephalomyopathy in humans. SCS catalyzes the interconversion of succinyl-CoA to succinate, coupled to substrate-level phosphorylation of either ADP or GDP, within the TCA cycle. SCS-deficient encephalomyopathy typically presents in infancy and early childhood, with many patients succumbing to the disease during childhood. Common symptoms include abnormal brain MRI, basal ganglia lesions and cerebral atrophy, severe hypotonia, dystonia, progressive psychomotor regression, and growth deficits. Although subunits of SCS were first identified as causal genes for progressive metabolic encephalomyopathy in the early 2000s, recent investigations are now beginning to unravel the pathomechanisms underlying this metabolic disorder. This article reviews the current understanding of SCS function within and outside the TCA cycle as it relates to the complex and multifactorial mechanisms underlying SCS-related mitochondrial encephalomyopathy.


Asunto(s)
Encefalomiopatías Mitocondriales , Succinato-CoA Ligasas , Preescolar , Humanos , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Mitocondrias/metabolismo , Succinato-CoA Ligasas/genética , Succinato-CoA Ligasas/metabolismo , Estrés Oxidativo
9.
Artículo en Inglés | MEDLINE | ID: mdl-36442996

RESUMEN

Biallelic pathogenic variants in DYNC2H1 are the cause of short-rib thoracic dysplasia type III with or without polydactyly (OMIM #613091), a skeletal ciliopathy characterized by thoracic hypoplasia due to short ribs. In this report, we review the case of a patient who was admitted to the Neonatal Intensive Care Unit (NICU) of Indiana University Health (IUH) for respiratory support after experiencing respiratory distress secondary to a small, narrow chest causing restrictive lung disease. Additional phenotypic features include postaxial polydactyly, short proximal long bones, and ambiguous genitalia were noted. Exome sequencing (ES) revealed a maternally inherited likely pathogenic variant c.10322C > T p.(Leu3448Pro) in the DYNC2H1 gene. However, there was no variant found on the paternal allele. Microarray analysis to detect deletion or duplication in DYNC2H1 was normal. Therefore, there was insufficient evidence to establish a molecular diagnosis. To further explore the data and perform additional investigations, the patient was subsequently enrolled in the Undiagnosed Rare Disease Clinic (URDC) at Indiana University School of Medicine (IUSM). The investigators at the URDC performed a reanalysis of the ES raw data, which revealed a paternally inherited DYNC2H1 deep-intronic variant c.10606-14A > G predicted to create a strong cryptic acceptor splice site. Additionally, the RNA sequencing of fibroblasts demonstrated partial intron retention predicted to cause a premature stop codon and nonsense-mediated mRNA decay (NMD). Droplet digital RT-PCR (RT-ddPCR) showed a drastic reduction by 74% of DYNCH2H1 mRNA levels. As a result, the intronic variant was subsequently reclassified as likely pathogenic resulting in a definitive clinical and genetic diagnosis for this patient. Reanalysis of ES and fibroblast mRNA experiments confirmed the pathogenicity of the splicing variants to supplement critical information not revealed in original ES or CMA reports. The NICU and URDC collaboration ended the diagnostic odyssey for this family; furthermore, its importance is emphasized by the possibility of prenatally diagnosing the mother's current pregnancy.


Asunto(s)
Polidactilia , Síndrome de Costilla Pequeña y Polidactilia , Femenino , Humanos , Recién Nacido , Embarazo , Dineínas Citoplasmáticas/genética , Secuenciación del Exoma , Mutación , Costillas , ARN Mensajero , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico , Síndrome de Costilla Pequeña y Polidactilia/genética
10.
Metabolites ; 12(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35448538

RESUMEN

Though biallelic variants in SLC13A5 are known to cause severe encephalopathy, the mechanism of this disease is poorly understood. SLC13A5 protein deficiency reduces citrate transport into the cell. Downstream abnormalities in fatty acid synthesis and energy generation have been described, though biochemical signs of these perturbations are inconsistent across SLC13A5 deficiency patients. To investigate SLC13A5-related disorders, we performed untargeted metabolic analyses on the liver, brain, and serum from a Slc13a5-deficient mouse model. Metabolomic data were analyzed using the connect-the-dots (CTD) methodology and were compared to plasma and CSF metabolomics from SLC13A5-deficient patients. Mice homozygous for the Slc13a5tm1b/tm1b null allele had perturbations in fatty acids, bile acids, and energy metabolites in all tissues examined. Further analyses demonstrated that for several of these molecules, the ratio of their relative tissue concentrations differed widely in the knockout mouse, suggesting that deficiency of Slc13a5 impacts the biosynthesis and flux of metabolites between tissues. Similar findings were observed in patient biofluids, indicating altered transport and/or flux of molecules involved in energy, fatty acid, nucleotide, and bile acid metabolism. Deficiency of SLC13A5 likely causes a broader state of metabolic dysregulation than previously recognized, particularly regarding lipid synthesis, storage, and metabolism, supporting SLC13A5 deficiency as a lipid disorder.

11.
Biomolecules ; 12(3)2022 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-35327599

RESUMEN

Ghrelin receptor, a growth hormone secretagogue receptor (GHS-R), is expressed in the pancreas. Emerging evidence indicates that GHS-R is involved in the regulation of glucose-stimulated insulin secretion (GSIS), but the mechanism by which GHS-R regulates GSIS in the pancreas is unclear. In this study, we investigated the role of GHS-R on GSIS in detail using global Ghsr-/- mice (in vivo) and Ghsr-ablated pancreatic islets (ex vivo). GSIS was attenuated in both Ghsr-/- mice and Ghsr-ablated islets, while the islet morphology was similar between WT and Ghsr-/- mice. To elucidate the mechanism underpinning Ghsr-mediated GSIS, we investigated the key steps of the GSIS signaling cascade. The gene expression of glucose transporter 2 (Glut2) and the glucose-metabolic intermediate-glucose-6-phosphate (G6P) were reduced in Ghsr-ablated islets, supporting decreased glucose uptake. There was no difference in mitochondrial DNA content in the islets of WT and Ghsr-/- mice, but the ATP/ADP ratio in Ghsr-/- islets was significantly lower than that of WT islets. Moreover, the expression of pancreatic and duodenal homeobox 1 (Pdx1), as well as insulin signaling genes of insulin receptor (IR) and insulin receptor substrates 1 and 2 (IRS1/IRS2), was downregulated in Ghsr-/- islets. Akt is the key mediator of the insulin signaling cascade. Concurrently, Akt phosphorylation was reduced in the pancreas of Ghsr-/- mice under both insulin-stimulated and homeostatic conditions. These findings demonstrate that GHS-R ablation affects key components of the insulin signaling pathway in the pancreas, suggesting the existence of a cross-talk between GHS-R and the insulin signaling pathway in pancreatic islets, and GHS-R likely regulates GSIS via the Akt-Pdx1-GLUT2 pathway.


Asunto(s)
Islotes Pancreáticos , Receptores de Ghrelina , Animales , Ghrelina/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo
12.
Cytogenet Genome Res ; 162(1-2): 40-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139523

RESUMEN

The 16p11.2 duplication is a well-known cause of developmental delay and autism, but there are only 2 previously reported cases of 16p11.2 triplication. Both of the previously reported cases exhibited tandem triplication on a 16p11.2 duplication inherited from 1 parent. We report fraternal twins presenting with developmental delay and 16p11.2 triplication resulting from inheritance of a 16p11.2 duplicated homolog from each parent. This report also reviews the overlapping features in previously published cases of 16p11.2 triplication, and possible implications are discussed.


Asunto(s)
Trastorno Autístico , Trastorno Autístico/genética , Duplicación Cromosómica/genética , Cromosomas Humanos Par 16/genética , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Padres , Fenotipo
14.
Ann Neurol ; 89(4): 828-833, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33443317

RESUMEN

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.


Asunto(s)
Cerebelo/anomalías , Discapacidades del Desarrollo/genética , Distonía/genética , Complejo Mediador/genética , Malformaciones del Sistema Nervioso/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Catarata/genética , Niño , Preescolar , Epilepsia/genética , Variación Genética , Humanos , Lactante , Fenotipo , Secuenciación del Exoma
15.
Am J Hum Genet ; 108(1): 134-147, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33340455

RESUMEN

The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.


Asunto(s)
Epilepsia/genética , Hipotiroidismo/genética , Trastornos del Neurodesarrollo/genética , Receptores Notch/genética , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Ano Imperforado/genética , Caenorhabditis elegans/genética , Línea Celular , Displasia Ectodérmica/genética , Trastornos del Crecimiento/genética , Células HEK293 , Pérdida Auditiva Sensorineural/genética , Histonas/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Mutación/genética , Nariz/anomalías , Enfermedades Pancreáticas/genética , Complejo de la Endopetidasa Proteasomal/genética
16.
Cancer Epidemiol ; 68: 101778, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32674053

RESUMEN

BACKGROUND: Mitochondrial DNA copy number (mtDNAcn) is considered a biomarker for mitochondrial function and oxidative stress. Although previous studies have suggested a potential relationship between mtDNAcn at the time of colorectal cancer (CRC) diagnosis and CRC prognosis, findings have been inconsistent, and no study has specifically investigated the association of pre-diagnostic mtDNAcn with CRC survival. METHODS: We examined the association of pre-diagnostic leukocyte mtDNAcn (measured by qPCR) with overall and CRC-specific survival among 587 patients in Nurses' Health Study and Health Professionals Follow-Up Study. Cox models were constructed to estimate hazard ratios (HRs) and 95 % confidence intervals (95 % CIs). RESULTS: During a mean follow-up of 10.5 years, 395 deaths were identified; 180 were due to CRC. Overall, we did not observe significant associations between mtDNAcn and either overall or CRC-specific survival among all cases or by cancer location, grade, or stage. In an exploratory stratified analysis, a suggestive inverse association of mtDNAcn and overall death risk appeared among current smokers [HR (95 % CI) for 1 SD decrease in mtDNAcn = 1.50 (0.98, 2.32), P-trend = 0.06]. Reduced mtDNAcn and lower CRC-specific death risk was observed among patients aged ≤ 70.5 at diagnosis [HR (95 % CI) for 1 SD decrease of mtDNAcn = 0.71 (0.52, 0.97), P-trend = 0.03], ≤ 5 years from blood collection to diagnosis [HR (95 % CI) for 1 SD decrease in mtDNAcn = 0.65 (0.44, 0.96), P-trend = 0.03] and those consuming a low-inflammatory diet [HR (95 % CI) for 1 SD decrease in mtDNAcn = 0.61 (0.42, 0.88), P-trend = 0.009]. CONCLUSION: no significant associations between pre-diagnostic leukocyte mtDNAcn and either overall or CRC-specific survival appeared but exploratory analysis identified potential sub-group associations.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/mortalidad , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Leucocitos/metabolismo , Mitocondrias/genética , Adulto , Anciano , Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , ADN Mitocondrial/sangre , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Pronóstico , Tasa de Supervivencia
17.
J Nutr ; 150(8): 2156-2163, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492151

RESUMEN

BACKGROUND: Poor lifestyles have been linked to insulin insensitivity/hyperinsulinemia, which may contribute to downstream changes such as inflammation and oxidative damage and the development of chronic diseases. As a biomarker of intracellular oxidative stress, leukocyte mitochondrial DNA copy number (mtDNA-CN) has been related to lifestyle factors including diet and weight. No epidemiologic study has examined the relation between combined insulinemic potential of lifestyle and mtDNA-CN. OBJECTIVES: Our aim was to examine the association between Empirical Lifestyle Index for Hyperinsulinemia (ELIH) and leukocyte mtDNA-CN in US men and women. METHODS: This cross-sectional analysis included 2835 white adults without cancers, diabetes, or cardiovascular disease at blood collection, including 2160 women from the Nurses' Health Study and 675 men from the Health Professionals Follow-Up Study. ELIH is an index based on plasma C-peptide that characterizes the insulinemic potential of lifestyle (diet, body weight, and physical activity). Relative mtDNA-CN in peripheral blood leukocytes was measured by qPCR-based assay. RESULTS: We found a significant inverse association between ELIH and mtDNA-CN. In multivariable-adjusted linear models, absolute least squares means ± SDs of mtDNA-CN z score across ELIH quintiles in women were as follows: Q1: 0.14 ± 0.05; Q2: 0.04 ± 0.06; Q3: 0.008 ± 0.05; Q4: 0.01 ± 0.05; and Q5: -0.06 ± 0.05 (P-trend = 0.006). Means ± SDs in men were as follows: Q1: 0.25 ± 0.09; Q2: 0.23 ± 0.09; Q3: 0.07 ± 0.09; Q4: 0.02 ± 0.09; and Q5: -0.04 ± 0.09 (P-trend = 0.007). Means ± SDs in all participants were as follows: Q1: 0.16 ± 0.05; Q2: 0.07 ± 0.05; Q3: 0.01 ± 0.05; Q4: 0.01 ± 0.05; and Q5: -0.05 ± 0.05 (P-trend = 0.0004). CONCLUSIONS: Hyperinsulinemic lifestyles (i.e., higher ELIH) were associated with lower leukocyte mtDNA-CN among subjects without major diseases, suggesting that the difference in lifestyle insulinemic potential may be related to excessive oxidative stress damage.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Hiperinsulinismo , Leucocitos , Estilo de Vida , Población Blanca/genética , Adulto , Estudios Transversales , Femenino , Predisposición Genética a la Enfermedad , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Estados Unidos
18.
Transl Psychiatry ; 10(1): 176, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32488052

RESUMEN

Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4GT/GT mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4GT/GT mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4GT/GT from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4GT/GT mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Animales , Encéfalo/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Estrés Fisiológico
19.
Am J Med Genet A ; 182(7): 1562-1571, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32426895

RESUMEN

We report on a 26-year-old male with extreme short stature, microcephaly, macroglossia, other dysmorphic features, severe intellectual disability, and a bone dysplasia. The patient had an extensive genetic and biochemical evaluation that was all normal or noninformative. Recently, the proband died following a period of not eating. He likely had a previously undescribed syndrome of unknown etiology.


Asunto(s)
Anomalías Múltiples/etiología , Enfermedades del Desarrollo Óseo/etiología , Enanismo/etiología , Adulto , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Cara/anomalías , Femenino , Retardo del Crecimiento Fetal , Humanos , Recién Nacido , Discapacidad Intelectual , Masculino , Microcefalia/etiología , Embarazo , Síndrome
20.
Artículo en Inglés | MEDLINE | ID: mdl-31518899

RESUMEN

Plasma elevations of the amino acids alloisoleucine and argininosuccinic acid (ASA) are pathognomonic for maple syrup urine disease and argininosuccinate lyase deficiency, respectively. Reliable detection of these biomarkers is typically achieved using methods with tedious sample preparations or long chromatographic separations, and many published amino acid assays report poor specificity and/or sensitivity for one or both of these compounds. This report describes a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method that provides rapid quantification of alloisoleucine and ASA in human plasma. The basis of this method is a mixed-mode solid phase separation that achieves baseline resolution of alloisoleucine from isobaric interferents without the use of derivatization or ion pairing agents. The inject-to-inject time is 6 min including elution, column washing and re-equilibration. Validation studies demonstrate excellent limits of quantification (1 µmol/L), linearity (r = 0.999 from 1 to 250 µmol/L), accuracy (bias = -3.8% and -10.1%), and inter-assay imprecision (CV < 8.06%) for plasma analyses. Data from long-term clinical application confirms chromatographic consistency equivalent to more traditional reversed-phase or HILIC based columns. Additional matrix studies indicate low suppression (<10%) for a wide range of amino acids and compatibility with other matrixes such as blood spot analyses. Finally, analysis of our first 257 clinical specimens demonstrates high analytic specificity and sensitivity, allowing the detection of subtle but clinically relevant elevations of alloisoleucine and ASA that may be missed by other less sensitive methods. In conclusion, the novel LC-MS/MS method reported here overcomes a number of the challenges associated with alloisoleucine and ASA quantification. Combining this approach with published incomplete amino acid quantification methods allows, for the first time, a rapid and comprehensive LC-MS/MS analysis of underivatized amino acids without the use of ion pairing agents.


Asunto(s)
Ácido Argininosuccínico/sangre , Cromatografía Liquida/métodos , Isoleucina/sangre , Espectrometría de Masas en Tándem/métodos , Ácido Argininosuccínico/química , Humanos , Isoleucina/química , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA